
Utilization of Coupling E�ects in

Compensator Design for Structural Acoustic

Systems �

H.T. Banks and M.A. Demetriou

Center for Research in Scienti�c Computation

North Carolina State University

Raleigh, NC 27695-8205

R.C. Smith

Department of Mathematics

Iowa State University

Ames, IA 50011

Abstract

The quanti�cation and utilization of coupling e�ects in a prototypical structural

acoustic system are examined in this paper. In typical systems, the coupling mecha-

nisms are manifested in two ways. The �rst leads to the transfer of energy from an

ambient �eld to an adjacent structure and is often responsible for exogenous structural

excitation. The second involves the transfer of energy from the vibrating structure to an

adjacent �eld. This is the source of structure-borne noise and is ultimately the mecha-

nism through which structural actuators are utilized to attenuate noise. The examples

presented here demonstrate that in fully coupled systems, both mechanisms should be

incorporated to accurately model system dynamics. The examples also illustrate ad-

vantages and limitations of compensators which utilize the accurate modeling of the

structural coupling.
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1 Introduction

The control of noise and vibration in structural acoustic systems has been intensely investi-

gated in applications ranging from aircraft design to transformer construction. The trademark

of all such applications and the mechanism ultimately utilized for control is the inherent cou-

pling between the structure and adjacent acoustic �elds. This mechanism is manifested in two

ways. In the �rst, energy from a vibrant �eld is transmitted to a structure through pressure

or force coupling. This is the mechanism responsible for fuselage vibrations due to propeller

draft or vibrations in the casing surrounding a transformer. Unattenuated vibration due to

the acoustic or uid/structure coupling can lead to structural fatigue. It can also lead to the

second mechanism of coupling in which energy is transmitted from the structure to an acoustic

or compressible uid �eld. This is the source of structure-borne noise and is ultimately the

mechanism through which structural actuators are used to attenuate noise.

Accurate modeling of the acoustic, structural and coupling components is a necessary �rst

step for predicting the dynamics of structural acoustic systems and the design of model-based

controllers. Substantial e�ort has been directed toward structural systems, and adequate linear

models for various geometries have been developed. Moreover, as illustrated in [9], model-

based controllers employing piezoceramic actuators have been experimentally implemented.

The case for large displacements and hence nonlinear structural models is less complete.

Similarly, linear wave models have been successfully utilized for low sound pressure level

acoustic applications. Like the structural case, appropriate nonlinear models for large sound

pressure levels are still under investigation. An important issue when modeling the acoustic

�eld concerns the relatively low wave speeds at general atmospheric conditions. This leads

to delays between the input of a signal to a structure-mounted actuator and measurement of

the corresponding response at an acoustic sensor. If left unmodeled or uncompensated, this

delay can destabilize a controller. This motivates the use of a dynamic wave model which

incorporates the physical transmission time.

The analysis of coupling mechanisms is less complete than that of the other components.

In the structural acoustic systems described in [5, 6, 10] and references therein, pressure

coupling provided the mechanism for energy transfer from the �eld to the structure while

velocity coupling yielded the converse e�ect. Modal coupling, radiation e�ciency and radiation

impedance were employed in [12, 13, 18] where the problem of attenuating structure-borne

noise was considered. These coupling techniques are concerned with describing the transfer

of energy from the structure to the �eld to address the objective of reducing the e�ciency

of structural radiation. The coupling between a nonlinear acoustic/uid �eld and a structure

through pressure balancing was employed in [15, 17] while pressure balancing was again used

in [16] for modeling the converse e�ect of acoustic radiation from a vibrating panel. In these

latter investigations, partial di�erential equations (PDE) derived from physical principles such

as force and momentumbalancing were used to model the uid/acoustic/structural dynamics;

however, these coupled models have not yet been utilized in acoustic control laws.

In this work, we quantify and utilize the two coupling e�ects for compensator design in a

prototypical 3-D structural acoustic system. This signi�cantly extends the results of [5, 10] due

to the higher dimensional complexity and analysis pertaining to compensator improvements

through utilization of the coupling. It di�ers from [12, 13, 18] in that coupled PDE are used to

model the system and provide a basis for the control laws. Modeling the system in this manner
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helps to provide insight for simulations and the development of model-based controllers.

The advantage of accurate quanti�cation of the coupling mechanisms for the purpose of

modeling system dynamics is obvious. The potential advantages from the perspective of

control design can be indicated through a brief overview of various aspects concerning a

feedback controller utilizing structural actuators.

In the idealized case of full state feedback control, information regarding the discretized

structural acoustic model and control operator is used to compute a Riccati solution and

corresponding gain. This gain is then applied to the state to compute a control signal which

is fed back to the structural actuators. Control of the structure-borne noise is realized due

to the natural \feedback loop" which results from the structural acoustic coupling. In this

case, the model provides the system information necessary for attaining an accurate Riccati

solution and hence gain. Note that this case is idealized in the sense that it requires knowledge

of the full structural (displacement, velocity) and acoustic (potential, pressure) states which

is not possible with current instrumentation.

A more realistic scenario when implementing the controller is one in which a limited number

of structural and/or acoustic measurements are available. In this case, the model is �rst used

to provide system information for an observer Riccati equation necessary for estimating or

reconstructing the state. The data for these calculations consists in part of the structural

and/or acoustic measurements. The feedback gain is then applied to the state estimate to

obtain the control signal. The model plays a dual role in this case since it provides system

information used in calculating both the state estimate and the feedback gain.

The second source of system information is the data collected from structural and/or acous-

tic sensors. In applications involving an enclosed or interior �eld (e.g., an aircraft cabin), it

may be possible to use both structural (e.g., accelerometers or piezoceramic patches) and

acoustic (e.g., microphones) sensors. To reduce weight and hardware requirements, however,

it is often advantageous to limit the number of sensors. This places the impetus for accurate

system predictions on the model. In other applications such as reduction of exterior noise

generated by a transformer or an underwater vehicle, it is di�cult, and in many cases impos-

sible, to employ acoustic sensors. In such cases, the acoustic state and feedback gain must

be calculated solely using the coupled model with structural data as input. For both interior

and exterior noise control applications, the success of the controller is contingent upon the

accuracy of the acoustic, coupling and structural components of the model.

We consider here various aspects concerning the utilization of coupling in a 3-D structural

acoustic system. In Section 2, we present the model and outline the general feedback control

methodology for the system. Numerical simulations demonstrating the e�ects of the two

coupling mechanisms are presented in Section 3. It is demonstrated that for systems subjected

to the two e�ects, both coupling mechanisms must be incorporated in the model to attain

the correct system dynamics and frequencies. Control simulations for a system having the

geometry and dimensions of an experimental device used in the Acoustics Division, NASA

Langley Research Center, are presented in Section 4. These results demonstrate that even with

a limited number of structural and acoustic sensors, signi�cant attenuation is attained with the

model-based controllers. The dimensions of the acoustic cavity relative to the vibrating surface

are signi�cantly increased in Section 5. This illustrates certain controllability issues which

must be addressed when employing structure-mounted actuators to control large acoustic

�elds. Section 6 contains a summary of numerical results demonstrating the design of a
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purely structural controller. These results show that such a controller provides adequate

attenuation for exogenous frequencies near isolated structural frequencies, but has minimal

e�ect when acoustic-like modes are excited. Taken in concert, these examples demonstrate

advantages and limitations of controllers which utilize accurate modeling of the structural

acoustic system.

From these results, the main contributions of this paper can be summarized as follows.

With regard to modeling, the numerical simulations demonstrate the manner through which

natural frequencies for the fully coupled system are modi�ed from those of the isolated struc-

tural and acoustic components. The coupling between components also leads to corresponding

modal changes. From a control perspective, the numerical examples demonstrate that for this

geometry, little control authority is lost by employing a realizable output feedback compen-

sator as compared with an impractical full state LQR theory. It is further demonstrated

that for this system, very adequate attenuation can be obtained via a compensator which

incorporates the fully coupled model but utilizes only structural sensors. While the degree

of attenuation achieved in this manner is application dependent, these results illustrate the

potential for reduced hardware through accurate modeling. Finally, the results illustrate that

the reduction of structural vibrations via isolated structural models is not adequate for con-

trolling broadband structure-borne noise. The acoustic �eld and coupling mechanisms must

also be incorporated in the model to attain e�ective noise reduction.

2 Model and Control Formulation

The �rst step in the development of a model-based control methodology is the derivation of

a system model. This is illustrated here for a structural acoustic test apparatus used in the

Acoustics Division, NASA Langley Research Center. This apparatus consists of a concrete

cylinder with a thin aluminum plate mounted at one end as depicted in Figure 1. The opposite

end is closed so that interior acoustic waves are reected back toward the plate. A loudspeaker

adjacent to the plate provides an exterior acoustic source while surface-mounted piezoceramic

patches are used as control elements. Note that in this system, both coupling between the

plate and interior �eld and pressure interactions between the interior/exterior acoustic �eld

and plate are present.

Γ0

Ω

Γ

0Γ

R

h

Figure 1. Cylindrical structural acoustic system with a �xed plate at one end.
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To specify the geometry, the cylinder is assumed to have length ` and radius R with a

thin plate of thickness h at one end. The interior acoustic domain is denoted by 
 while �0
indicates the plate domain. The remaining boundary of the acoustic cavity is denoted by �

and has an outward normal n̂.

The test apparatus just described is a hybrid system in several senses. The generation of

interior noise is due to structural acoustic coupling while control via the piezoceramic patches

is due to electromechanical interactions. Finally, the system contains several electromagnetic

components due to the hardware required for sensing and control. We describe here PDE

modeling the structural, acoustic and structural acoustic coupling components as well as the

electromechanical input from the patches. When spatially discretized, this provides a vector

ODE which approximates the dynamics of the acoustic and mechanical components of the

experimental system. Various uncertainties are then incorporated in the model to account for

model and sensing uncertainties as well as the unmodeled electromagnetic components. The

section concludes with an H1/MinMax formulation appropriate for the ODE system with

uncertainties.

2.1 System Model

Interior Acoustic Field

For the purpose of modeling the interior acoustic �eld dynamics, it is assumed that sound

pressure levels are below 120 dB and that acoustic �eld damping is negligible. These are rea-

sonable and typical assumptions when considering the sound pressure levels and dimensions of

the experimental device or in applications such as control of fuselage noise. Furthermore, it is

assumed that the acoustic cylinder and endcap are not inuenced by the interior acoustic �eld;

that is, no concrete pipe or endcap frequencies are found in the system response. This latter

assumption has been veri�ed through accelerometer tests with the experimental apparatus.

With � and c denoting an acoustic velocity potential and wave speed, respectively, an

appropriate model for the interior acoustic dynamics is

@2�

@t2
= c2�� ; (r; �; z) 2 
 ; t > 0 ;

r� � n̂ = 0 ; (r; �; z) 2 � ; t > 0

(2.1)

with the Laplacian in cylindrical coordinates given by

�� =
@2�

@r2
+
1

r

@�

@r
+

1

r2
@2�

@�2
+
@2�

@z2
:

The linear wave equation provides an adequate approximation of the acoustic dynamics for the

sound pressure levels under consideration. This includes the dynamic e�ects which account

for the time required to propagate information from the plate to sensors in the cavity. The

hardwall boundary conditions are justi�ed by the inert nature of the concrete cylinder and

endcap with the form of the boundary conditions resulting from the inherent relationship

between the acoustic potential and velocity (i.e., v = �r�). Finally, we note that the
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potential is related to the acoustic pressure through the relationship p = �f
@�

@t
where �f

denotes the equilibrium density of the interior acoustic �eld.

Plate Dynamics

In developing dynamic equations for the plate, it is assumed that the displacements are

within the range of linear theory and that rotational e�ects are negligible. Both of these

assumptions have been validated through parameter estimation for the plate in the experi-

mental setup (see [8]). Furthermore, it is assumed that s piezoceramic patch pairs are bonded

to the plate and driven out-of-phase so as to produce pure bending moments. Finally, it

is assumed that boundary clamps are su�ciently tight to permit the use of clamped-edge

boundary conditions. This latter assumption is again justi�ed by the experimental results

in [8].

As detailed in [7, 22], an appropriate model for the circular plate derived under the as-

sumption of negligible air damping is

�h
@2w

@t2
�
@2Mr

@r2
�

2

r

@Mr

@r
+
1

r

@M�

@r
�

2

r

@2Mr�

@r@�
�

2

r2
@Mr�

@�
�

1

r2
@2M�

@�2
= g(t; r; �) ;

w(t; R; �) =
@w

@r
(t; R; �) = 0

where w is the transverse plate displacement, � is the structural density and g is a general

surface force input term. The general moments are given by

Mr = Mr � (Mr)pe

M� = M� � (M�)pe

Mr� = Mr�

where Mr;M� and Mr� are internal plate moments and (Mr)pe and (M�)pe are the external

moments generated by the patches.

The internal moments for the circular plate with s pairs of surface-mounted piezoceramic

patches have the form

Mr = DKr + ~DK� + cD _Kr + ~cD _K�

M� = DK� + ~DKr + cD _K� + ~cD _Kr

Mr� =M�r =
D

2
� �

~D

2
� +

cD

2
_� �

~cD

2
_�

(2.2)

where

Kr = �
@2w

@r2
; K� = �

1

r

@w

@r
�

1

r2
@2w

@�2
; � = �

2

r

@2w

@r@�
+

2

r2
@w

@�
:

The global exural rigidity parameters D; ~D and Kelvin-Voigt damping parameters cD and
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~cD are given by

D(r; �) =
Eph

3

12(1 � �2
p
)
+
2

3

sX
i=1

"
Epea3pe

1� �2
pe

+
Eb`a3b`

1� �2
b`

#
�i(r; �)

~D(r; �) =
Eph

3�p

12(1 � �2
p
)
+
2

3

sX
i=1

"
Epea3pe�pe

1� �2
pe

+
Eb`a3b`�b`

1� �2
b`

#
�i(r; �)

cD(r; �) =
ĉDp

h3

12(1 � �2
p
)
+
2

3

sX
i=1

"
ĉDpe

a3pe

1 � �2
pe

+
ĉDb`

a3b`

1 � �2
b`

#
�i(r; �)

~cD(r; �) =
ĉDp

h3�p

12(1 � �2
p
)
+
2

3

sX
i=1

"
ĉDpe

a3pe�pe

1 � �2
pe

+
ĉDb`

a3b`�b`

1� �2
b`

#
�i(r; �)

(2.3)

where the Young's modulus, density coe�cient, Poisson ratio and Kelvin-Voigt damping coef-

�cient for the plate are denoted by Ep; �p; �p and ĉDp, respectively, while similar parameters for

the patches and bonding layer are denoted by Epe; �pe; �pe; ĉDpe and Eb`; �b`; �b`; ĉDb`
, respec-

tively. The constants a3b` � (h=2+ Tb`)
3� (h=2)3; a3pe � (h=2 +Tb`+ T )3� (h=2 +Tb`)

3 arise

from integration through the bonding layer Tb` and patch thickness T while �i(r; �) denotes

the characteristic function which has a value of 1 in the region covered by the ith patch and

is 0 elsewhere. Finally, the mass density also exhibits a piecewise constant nature due to the

presence of the patches and is given by

�(r; �) = �p +
2

h

sX
i=1

[�b`Tb` + �peT ]�i(r; �) :

We point out that if the plate, patches and bonding layers have the same Poisson ratios

(�p = �pe = �b` = �), then the internal moment expressions reduce to the familiar relations

for a thin plate with variable thickness due to the bonding layers and patches. For example,

Mr in this case is given by

Mr = �D

 
@2w

@r2
+
�

r

@w

@r
+
�

r2
@2w

@�2

!
� cD

 
@3w

@r2@t
+
�

r

@2w

@r@t
+
�

r2
@3w

@�2@t

!

with D and cD de�ned in (2.3).

The external moments generated by the patches in response to an applied voltage (out-of-

phase for the patch pair) are given by

(Mr)pe = (M�)pe = �
sX
i=1

KB

i
ui(t)�i(r; �) (2.4)

where ui(t) is the voltage into the i
th patch pair and KB

i
is a parameter which depends on the

geometry, piezoceramic and plate material properties, and piezoelectric strain constant (see

[11] for details). Note that (2.4) accounts for the electromechanical coupling through which

an applied voltage is converted to mechanical input.

6



Structural Acoustic Coupling

Two structural acoustic coupling mechanisms are inherent in the system. The �rst accounts

for the inuence of the internal and external acoustic �elds on the structure. It yields the

input term

g(t; r; �) = f(t; r; �)� �f
@�

@t
(t; r; �; w(t; r; �))

where f is a surface force modeling the exogenous loudspeaker input and �f
@�

@t
= p is the

backpressure force due to the interior �eld. The second mechanism is responsible for the

transfer of energy from the plate to the interior �eld. It is modeled by the continuity of

velocity condition

@�

@z
(t; r; �; w(t; r; �)) = �

@w

@t
(t; r; �) ; (r; �) 2 �0 ; t > 0

(recall that due to the de�nition of the potential �, �@�
@z

is the acoustic velocity in the z-

direction). Because both conditions occur at the moving plate surface, they are inherently

nonlinear. Under the assumptions of small displacements, however, it is reasonable to linearize

about the rest state to obtain

g(t; r; �) = f(t; r; �)� �f
@�

@t
(t; r; �; 0)

@�

@z
(t; r; �; 0) = �

@w

@t
(t; r; �)

(see [6] for numerical investigations validating this assumption).

Strong Form of System Model

Consolidation of components yields the strong form of the coupled acoustic/structural/

electromechanical model

@2�

@t2
= c2�� ; (r; �; z) 2 
 ; t > 0 ;

r� � n̂ = 0 ; (r; �; z) 2 � ; t > 0 ;

@�

@z
(t; r; �; 0) = �

@w

@t
(t; r; �) ; (r; �) 2 �0 ; t > 0 ;

�h
@2w

@t2
�
@2Mr

@r2
�

2

r

@Mr

@r
+
1

r

@M�

@r
�

2

r

@2Mr�

@r@�
�

2

r2
@Mr�

@�
�

1

r2
@2M�

@�2

=
�@2(Mr)pe

@r2
�
2

r

@(Mr)pe

@r
+
1

r

@(M�)pe

@r
�

1

r2
@2(M�)pe

@�2

��f
@�

@t
(t; r; �; 0) + f(t; r; �) ;

w(t; R; �) =
@w

@r
(t; R; �) = 0

(2.5)
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with initial conditions

�(0; r; �; z) = �0(r; �; z) ; w(0; r; �) = w0(r; �) ;

@�

@t
(0; r; �; z) = �1(r; �; z) ;

@w

@t
(0; r; �) = w1(r; �) :

It is noted that in this form, moments are di�erentiated in the plate component. Because the

moments are discontinuous due to piecewise constant material parameters and control inputs,

this leads to regularity problems associated with the di�erentiation of a Dirac delta `function'.

To avoid ensuing di�culties with the di�erentiation and to reduce smoothness requirements

on approximating bases, it is advantageous to reformulate the problem in a corresponding

weak or variational form.

Weak Formulation of System Model

To provide classes of functions which are considered when de�ning a variational form of

the problem, we consider the state space X = �L2(
) � L2(�0) and space of test functions

V = �H1(
)�H2

0
(�0) where H

2

0
(�0) =

n
 2 H2(�0) :  = @ 

@r
= 0 at r = R

o
. Here �L2(
) and

�H1(
) are the quotient spaces of L2(
) and H1(
) over the constant functions (the use of

these spaces is due to the fact that the potentials are determined only up to a constant).

As detailed in [7, 22], an appropriate variational form of the coupled system model is

Z



�f

c2
@2�

@t2
�d! +

Z



�fr� � r�d!

+

Z
�0

�h
@2w

@t2
�d �

Z
�0

Mr

@2�

@r2
d �

Z
�0

1

r
M�

@�

@r
d �

Z
�0

1

r2
Mr�

@2�

@�2
d

�2
Z
�0

1

r
Mr�

@2�

@r@�
d + 2

Z
�0

1

r2
Mr�

@�

@�
d

+
Z
�0

�f

 
@�

@t
� �

@w

@t
�

!
d

=
Z
�0

sX
i=1

KB

i
ui(t)r2� �i(r; �)d +

Z
�0

f�d

(2.6)

for all test functions (�; �) 2 V . In this formulation, d! = r dr d� dz and d = r dr d� while

the overbars in (2.6) denote complex conjugates. An abstract formulation for this model,

which leads to well-posedness results, is given in [4, 7, 22].

2.2 Spatial Approximation

To obtain a time-dependent ODE system suitable for simulations, parameter estimation and

control, a semidiscretization of the plate and acoustic states was performed. As detailed in
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[22], appropriate Galerkin approximations of the displacement and potential are given by

wN (t; r; �) =
NX
j=1

wN
j
(t)BN

j
(r; �)

�M(t; r; �; z) =
MX
j=1

�M
j
(t)BM

j
(r; �; z) :

The basis fBN
j
(r; �)g is constructed from modi�ed cubic splines in r combined with periodic

Fourier components in � while modi�ed Legendre polynomials in r and z were combined with

Fourier components in � to obtain fBM
j
(r; �; z)g. In all examples which follow, a total of

M = 99 and N = 12 basis functions were employed.

Projection of the system (2.6) onto the �nite dimensional subspace spanned by the bases

yields a P = 2(M+N ) dimensional ODE system

MP _xP(t) = ~APxP(t) + ~BPu(t) + ~FP(t)

MPxP(0) = ~xP
0
:

(2.7)

The vector xP(t) has the form xP(t) = ['(t); #(t); _'(t); _#(t)]T where '(t) = [�M
1
(t); � � � ; �MM(t)]

and #(t) = [wN
1
(t); � � � ; wN

N
(t)] contain the generalized Fourier coe�cients for the approximate

acoustic potential and plate displacement, respectively. The vector u(t) = [u1(t); � � � ; us(t)]
T

contains the s patch input variables. The system matrices and vectors have the form

MP =

2
66666664

KA

KP

MA

MP

3
77777775

; ~AP =

2
66666664

KA

KP

�KA �Ac1

�KP �Ac2 �CP

3
77777775

(2.8)

and
~BP =

h
0 ; 0 ; 0 ; B̂

i
T

; ~FP(t) = [0 ; 0 ; 0 ; ĝ(t)]
T
:

The vector ~xP
0
contains the projections of the initial values into the approximating �nite

dimensional subspaces while B̂ and ĝ(t) contain the input terms. The component matrices

MP ;KP and CP are the mass, sti�ness and damping matrices for the isolated plate whileMA

and KA denote the mass and sti�ness matrices which arise when approximating the uncoupled

wave equation with Neumann boundary conditions on a cylindrical domain (see [22] for details

regarding these formulations). Contributions due to the coupling are contained in the matrices

[Ac1]i;` = �

Z
�0

�fB
N

`
BM
i
d ; [Ac2]`;i =

Z
�0

�fB
M

i
BN
`
d

where the index ranges are i = 1; � � � ;M and ` = 1; � � � ;N .

Multiplication by the inverted system mass matrix then yields the equivalent Cauchy

system
_xP(t) = APxP(t) +BPu(t) + FP(t)

xP(0) = xP
0
:

(2.9)

9



Observed System

In control applications, one typically has available only a limited number of state obser-

vations. Hence for implementation purpose, a �nite dimensional observation operator CP

yielding approximate state observations

yP(t) = CPxP(t) (2.10)

must be developed. It is assumed here that a total of m measurements are made at the points

Potential: !i� ; i� = 1; � � � ; N�

Displacement: iw ; iw = 1; � � � ; Nw

Pressure: !ip ; ip = 1; � � � ; Np

Velocity: iv ; iv = 1; � � � ; Nv

9>>>>>>=
>>>>>>;

) m = N� +Nw +Np +Nv : (2.11)

An appropriate observation operator is then

CP =

2
666664

C� 0 0 0

0 Cw 0 0

0 0 Cp 0

0 0 0 Cv

3
777775 ;

C� 2 lRN��M

Cw 2 lRNw�N

Cp 2 lRNp�M

Cv 2 lRNv�N

(2.12)

where

[C�]i�;k = BM
k
(!i�) =

Z



�(! � !i�)B
M

k
d!

[Cw]iw;k = BN
k
(iw) =

Z
�0

�( � iw)B
N

k
d

[Cp]ip;k = BM
k
(!ip) =

Z



�f�(! � !ip)B
M

k
d!

[Cv]iv;k = BN
k
(iv) =

Z
�0

�( � iv)B
N

k
d :

Note that the ith
�
observation of the approximate potential is given by

[y(t)]
i�
= [C�'(t)]i� = �M(t; !i�)

with analogous expressions for the observed displacement, pressure and velocity.

Unmodeled Dynamics

The system (2.9) provides an approximation of the structural acoustic and electromechan-

ical components of the experimental system described at the beginning of this section. It

ignores, however, the electrical e�ects of the necessary control circuitry (e.g., ampli�ers, �l-

ters, A/D and D/A converters) and unmodeled physical contributions which are unavoidable
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in experimental systems. For example, the damping provided by the patches when the circuit

is completed is not explicitly included in the model.

To incorporate such unmodeled e�ects, uncertainties in the form of additive random state

perturbations are included in the model. With �1(t); � � � ; �4(t) taken as random variables on

[�:1; :1], this can be accomplished through the inclusion of a term

DP�P(t) �

2
666664

0 0

0 0

�KA �Ac1

�KP �Ac2 �CP

3
777775

2
666664

�1'(t)

�2#(t)

�3 _'(t)

�4 _#(t)

3
777775 (2.13)

in the �nite dimensional model (2.9). Note that this yields the coupled dynamic ODE system

MA �'(t) +KA[1 + �1(t)]'(t) +Ac1[1 + �4(t)] _#(t) = 0

MP
�#(t) + CP [1 + �4(t)] _#(t) +KP [1 + �2(t)]#(t) +Ac2[1 + �3(t)] _'(t) = B̂u(t) + ĝ(t)

(2.14)

which incorporates damping and sti�ness uncertainties. While other choices for DP exist

[2, 10], this construction incorporates uncertainties at the constitutive level. It is further

motivated by experimental results in [8] which demonstrate that while damping e�ects due

to completed patch circuits are unmodeled, the e�ect is phenomenologically similar to the

Kelvin-Voigt damping. This is exactly the manner through which damping uncertainties are

incorporated in (2.13).

It is further assumed that errors proportional to the output are found in the observed data.

To include these contributions, the observations are taken of the form

yP(t) = CPxP(t) + EP�(t)

where [EP�(t)]j = �̂j(t)[C
PxP(t)]j ; j = 1; � � � ;m. Here �̂j(t) is a random variable on [�:1; :1].

To summarize, the observed system with state and measurement uncertainties is given by

_xP(t) = APxP(t) +BPu(t) +DP�(t) + FP(t)

yP(t) = CPxP(t) + EP�(t) :
(2.15)

2.3 Control Formulation

We briey summarize here the methodology for the H1/MinMax periodic control of the

�nite dimensional structural acoustic system (see [2] for details). It is assumed that the only

exogenous moments and forces being applied to the plate are periodic forces having a period

� ; hence F (0) = F (� ) in (2.15). Note that in accordance with usual �nite dimensional control

convention, we will drop all superscripts throughout the remainder of this work. It can be

assumed throughout that the system dimension is P = 2(M+N ).
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Full State Feedback

For the case with full state information, the system to be controlled is

_x(t) = Ax(t) +Bu(t) +D�(t) + F (t)

x(0) = x(� ) :
(2.16)

The performance output z(t) 2 Z is given by

z(t) = Hx(t) +Gu(t);

where Z is a performance output space (see [19, 23]). For the �nite dimensional approximate

system, the problem of determining a controlling voltage can then be posed as the problem of

�nding u 2 L2(0; � ;U) which minimizes the steady-state disturbance-augmented functional

J(u) =

Z
�

0

n
hQx(t); x(t)i

lR
P + hRu(t); u(t)ilRs � 2j�(t)j2

W

o
dt

where x(t) solves (2.16), R = GTG is an s � s diagonal matrix containing weights which

penalize overly large voltages to the patches [1], andW denotes the space in which disturbances

evolve. An appropriate choice for the nonnegative matrixQ = HTH, which stems from energy

considerations, is a diagonal matrix multiple of the mass matrix in (2.7) (see [5]). Here  2 RI

is a �xed positive constant which is a design parameter to be chosen as small as possible. In

this case, theH1 norm of the closed loop disturbance to performance output transfer function

from �(�) to z(�) is bounded above by .

Under suitable conditions (see [14]), optimal control theory can then be used to show that

the optimal controlling voltage is given by

u(t) = �Kx(t) +R�1BTr(t) (2.17)

where K = R�1BT� and � is the unique nonnegative self adjoint solution to the algebraic

Riccati equation

AT�+�A��

 
BR�1BT �

1

2
DDT

!
�+Q = 0 :

The tracking component r(t) solves the adjoint equation

_r(t) = �

"
A�

 
BR�1BT �

1

2
DDT

!
�

#
T

r(t) + �F (t)

r(0) = r(� ) :

(2.18)

Output Feedback

The feedback law (2.17) is idealized in the sense that it requires knowledge of the full state

(displacement, velocity, potential and pressure) which, using current instrumentation, is not

possible. Instead, one typically has available measurements at a discrete number of points
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(see (2.10)). From these observations y, the state is reconstructed or estimated by solving the

MinMax state estimator equation

_̂x(t) =

"
A� FcC �BK +

1

2
DDT�

#
x̂(t) + Fcy(t)

+F (t) +

 
BR�1BT �

1

2
DDT

!
r(t)

x̂(0) = x̂(� )

(2.19)

(see [1, 2, 10, 14]). The observer gain Fc has a form similar to that of the feedback gain K

and is given by Fc = (I � 1


2��)

�1�CTN�1

e
. Here Ne is a design matrix which is related to

the e�ect of noise in the data and � solves a second algebraic Riccati equation

A�+ �AT � �

 
CTN�1

e
C �

1

2
Q

!
� +DDT = 0: (2.20)

In addition to the self adjointness and non-negativity of the matrices � and �, a supplementary

condition is typically imposed, namely the boundedness of the spectral radius of �� by 2

(see [1, 19, 23]). This latter condition can be expressed as

�sp(��) < 2:

Once a state estimate x̂(t) is obtained, the controlling voltage is given by

u(t) = �Kx̂(t) +R�1BTr(t) (2.21)

where r(t) is again the unique � -periodic solution of the adjoint or tracking equation (2.18).

3 Open Loop Simulations

To illustrate the e�ects of coupling and the manner through which the plate and acoustic

components contribute to the coupled system dynamics, we summarize here characteristic

open loop dynamics for the system. The dimensions for the system were chosen to be com-

patible with those of the experimental cylinder at NASA Langley Research Center which has

length ` = 1:067m (4200) and radius R = 0:229m (900). The end-mounted plate has thickness

h = 0:00127m (0:0500) with a pair of centered piezoceramic patches with respective thickness

and radius hpe = 0:00018m (0:00700) and Rpe = 0:019m (0:7500). These values were then used

for the simulations reported here. The physical parameters for the simulations are summa-

rized in Table 1. As reported in [8], these values are also consistent with physical parameters

for the experimental setup.

Throughout this section, control inputs are excluded (u(t) = 0) and impact-like spatial and

acoustic inputs are used to generate transient system responses. A comparison of natural fre-

quencies is then used to quantify the contributions of the structural and acoustic components

and the two coupling mechanisms modeled by force (pressure) and velocity balancing.

To provide a baseline for comparison, natural frequencies for the isolated plate and acoustic

�eld are summarized in Table 2. As detailed in [7, 22], where the full set of frequencies
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are provided, the plate frequencies were calculated under the assumption of no damping

(cD = 0) while the acoustic frequencies were calculated under the assumption of fully Neumann

boundary conditions.

As discussed in Section 2, force balancing is used to incorporate the acoustic e�ects on

the structure; this leads to a pressure input term in the modeling acoustic equation. Velocity

balancing incorporates the converse coupling mechanism through which energy is transmitted

from the structure to the acoustic �eld. In terms of the component matrices in (2.7), these

coupling components enter as input terms in the vector equations

MA �'(t) +KA'(t) = �Ac1
_#(t) + FMg(t)

MP
�#(t) + CP _#(t) +KP#(t) = �Ac2 _'(t) + FNf(t)

(3.1)

(compare with (2.14)).

Structure Acoustic Cavity

Parameter Plate Plate + Pzt Parameter Cavity

� � Thickness (kg=m2) 3.429 3.489 �f (kg=m3) 1.21

D (N �m) 13.601 13.901

cD (N �m � sec) 1.150-4 2.250-4

� .33 .32

KB (N=V ) .027

c (m/sec) 343

Table 1. Physical parameters for the structure and acoustic cavity.

Plate (fmn) Wave (fmnp)

(0,0) 62.0 (0,0,1) 160.8 (0,1,0) 915.0

(0,1) 241.2 (0,0,2) 321.5 (0,1,1) 929.0

(0,2) 540.5 (0,0,3) 482.3 (0,1,2) 969.9

(0,3) 959.5 (0,0,4) 643.0

(0,0,5) 803.8

(0,0,6) 964.6

Table 2. Axisymmetric natural frequencies for the isolated and undamped plate and cavity

(in hertz). The cavity mode (m;n; p), corresponding to frequency fmnp, has m nodal lines in

�, n nodal circles in r and p nodal lines z (similarly for plate modes).
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The vectors FMg(t) and FNf(t) incorporate the exogenous input to the cavity and plate,

respectively. For an impact at time t = t0 applied at the plate point (r0; �0), the components

of FNf(t) are given by

[FNf(t)]k = �(t� t0)
Z
�0

�(r � r0; � � �0)B
N

k
d

= �(t� t0)B
N

k
(r0; �0)

with a similar expression for the acoustic input. Note that one can consider g(t) � 0 if no

acoustic input is present as is the case in the coupled structural acoustic control problem. In

all examples here, plate impacts are at (r; �) = (0; 0) while cavity impacts are at (r; �; z) =

(0; 0; `=3).

By considering various coupling combinations (e.g., Ac1 � 0 eliminates the coupling mech-

anism through which energy is transmitted from the plate to the cavity) and force inputs

f(t); g(t), the e�ects of the two coupling mechanisms were isolated. The six coupling/input

combinations are depicted in Figure 2 and are summarized below.

(a) (b) (c)

x x x

x x x

Figure 2. Coupling combinations with plate and acoustic impulse forces at the point x;

(a) Coupling from structure to �eld; (b) Coupling from �eld to structure; (c) Full structural

acoustic coupling.

Case (i): Coupling from Structure to Field

To illustrate the case in which coupling from the structure to the acoustic �eld is incor-

porated in the model but energy transfer from the �eld to the structure is neglected, we let

Ac2 � 0 in (3.1) and (2.8). This case is depicted in Figure 2a. Note that the exogenous force

FMg(t) and velocity coupling provide input to the cavity while the only input to the plate is

provided by the exogenous force FNf(t).

Consider �rst the force choices g(t) = 0; f(t) = �(t � t0) which models an impact to the

plate with no exogenous force to the cavity. Because the plate is una�ected by the acoustic

�eld in this case, natural frequencies measured on the plate will be close to those summarized
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in Table 2 with di�erences due only to the Kelvin-Voigt damping. The structure acts as an

input to the cavity with frequencies governed by the harmonics of the plate. Hence both plate

and wave frequencies will be measured in the cavity. The frequencies obtained via (2.7) at the

plate point p1 = (0; 0) and cavity point c2 = (0; 0; :35) depicted in Figure 3 are summarized in

Table 3. Frequencies calculated at the plate point are indicated in the table by p while c denotes

frequencies measured at c2. It should be noted that to within the sampling resolution, the

frequencies calculated at both points agree with those for the isolated components which are

summarized in Table 2. Furthermore, Table 3 illustrates the transmission of plate frequencies

into the cavity.

The conclusion for general structural acoustic systems will be similar. The incorporation

of only the velocity coupling in the model will lead to a system response similar to that of

the components with structural frequencies propagated into the acoustic �eld. This type of

model might be useful if considering far �eld acoustics generated by a vibrating structure

(e.g., transformer). As illustrated in Case (iii), however, it may provide inaccurate system

frequencies in applications in which the acoustic oscillations couple back to the structure.

The second choice g(t) = �(t � t0); f(t) = 0 models an impact in the cavity with no

exogenous force to the plate. The purely cavity frequencies summarized in Table 2 will be

present at the cavity point c2. No response will be noted on the plate since the coupling

between the �eld and plate is neglected in this case.

c1p
1

c2 3cL1

Figure 3. The structural acoustic system with evaluation points p1 = (0; 0); c1 = (0; 0:05),

c2 = (0; 0; :35), c4 = (0; 0; 1:0) and evaluation line L1.

Natural System Frequencies

p,c 62.0 c 160.8 c 915.4

p,c 241.2 c 321.5 c 928.1

p,c 540.5 c 482.3 c 969.8

p 959.5 c 643.7

c 806.6

Table 3. System frequencies obtained with Ac2 � 0; p: frequencies observed at the plate

point p1 = (0; 0), c: frequencies observed at the cavity point c2 = (0; 0; :35).
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Case (ii): Coupling from Field to Structure

This case can be quanti�ed by considering Ac1 � 0 in (2.8). As shown in (3.1) and depicted

in Figure 2b, the model in this case incorporates the acoustic inuence upon the structure

but neglects structural inuence upon the �eld. The dynamics can be predicted from those

observed in Case (i) with the opposite mechanism. The acoustic frequencies are propagated

to the structure when g(t) = �(t � t0); f(t) = 0 with both sets close to the those of the

isolated components (the only deviation is a slight shift in the structural frequencies due to

the Kelvin-Voigt damping). This model will be accurate only for systems in which the �eld

strongly drives the structure with negligible feedback from the structure to the �eld.

Case (iii): Full Coupling between Field and Structure

The case of primary interest for the system considered here is that in which both coupling

mechanisms are incorporated in the system model. Hence both the matrix Ac1 (velocity

coupling) and matrix Ac2 (pressure coupling) are included in the ODE system (2.8) or (3.1).

System frequencies for this case are summarized in Table 4. A comparison between these

results and corresponding frequencies for the uncoupled plate and acoustic �eld (see Table 2)

indicates that while the system response reects the structural and acoustic components,

the system frequencies are shifted from those of the components due to the coupling. The

three system frequencies corresponding to the plate component (59.5, 239.5, 538.2 Hz) are

lower than the corresponding frequencies of the isolated plate. Thus the coupled acoustic

�eld e�ectively mass loads the structure. The remaining system frequencies correspond to the

acoustic component. They are higher than those for the isolated wave �elds which indicates

that the coupling of the plate to the acoustic �eld provides a sti�ening e�ect to the �eld. For

the geometry investigated here, we observe frequency shifts of approximately 2:5 Hz (� 5%)

for lower frequencies and 3 to 4 Hz (� 1% to 2%) for higher frequencies. Hence in many

applications, the uncoupled systems will provide su�cient modal information.

However, for many systems which are closed in the sense that both acoustic/structure and

structure/acoustic interactions are present, both mechanisms may need to be incorporated in

the model to accurately match dynamics. Omission of either mechanism will lead to model

frequencies which match those of the isolated components but may not match those of the

actual coupled system. Employment of a model which neglects coupling components in a

PDE-based controller can lead to decreased control authority. If the neglected coupling is

signi�cant, the controller will be destabilized by the ensuing frequency inaccuracies.

Natural System Frequencies

p,c 59.5 p,c 163.4 c 915.6

p,c 239.5 p,c 324.1 p,c 929.3

p,c 538.2 p,c 483.1 p,c 971.0

p,c 645.2

p,c 807.5

Table 4. System frequencies obtained with full structural acoustic coupling conditions; p:

frequencies observed at the plate point p1 = (0; 0), c: frequencies observed at the cavity point

c2 = (0; 0; :35).
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4 Closed Loop Simulations{Short Cylinder

For compensator design, the spatially discretized model (2.15) with full structural acoustic

coupling was considered. The performances of the full state H1/MinMax feedback control,

output feedback MinMax control and LQG feedback control (Kalman �lter) were then com-

pared with open loop system responses for a variety of sensor con�gurations and geometries.

This provided a means of evaluating and utilizing the coupling in the model-based compen-

sator.

To illustrate, two geometries for the structural acoustic system were considered. For the

�rst, dimensions consistent with those of the experimental chamber in the Acoustics Divi-

sion, NASA Langley Research Center were used (see the discussion in Section 3 and Table 1).

This provided simulation results which can be used to predict experimental dynamics and

guide experiments involving that setup. The numerical results for this geometry are reported

in this section. The second geometry involves an acoustic chamber whose length is signi�-

cantly longer than the diameter of the vibrating plate. This illustrates the manner through

which the acoustic wave equation describes the e�ective physical delays due to relatively slow

wave speeds. It also indicates controllability issues which must be considered when designing

controllers for such systems. Results for this geometry are summarized in Section 5.

The exogenous force to the plate was taken to be

f(t) = 28:8[sin(2�170t) + sin(2�330t) + sin(2�100t) + sin(2�250t)] : (4.1)

This models a plane acoustic wave with an rms sound pressure level of 126 dB. This excites

a combination of modes since the �rst two frequencies (170 Hz, 330 Hz) couple readily with

cavity-like modes while the latter two frequencies strongly a�ect plate-like frequencies (see

Tables 2 and 4).

Consideration of the control laws outlined in Section 2.3 indicates several design parameters

which can be used to weight input and output values as well as various states and sensors.

The speci�c design of the model uncertainty matrix D and output uncertainty matrix E also

can be modi�ed according to the application. Furthermore, the parameter  which bounds

the H1 norm of the transfer function from disturbance to performance output can be tuned

to improve performance.

Various criteria are considered when choosing these design parameters. These include

overall attenuation levels, control magnitude (overly large voltages will destroy the patches),

conditioning of Riccati solutions and spectrum stability of the closed loop system. Many of

these issues are addressed in [3] and the reader is referred to that reference for a general

discussion of these design criteria. Reference [4] contains details regarding the speci�c choices

for these simulations.

The design criteria involving the state, observation and control weights, and MinMax

parameter , arise from the formulation of the control law rather than the physics of the

problem. The placement and number of sensors and actuators, however, is a design criterion

which is directly related to the physics. As mentioned previously, a pair of circular, centered

piezoceramic patches are employed as actuators in the experimental system. These actuators

are glued to the plate and are considered as permanent throughout both experiments and

simulations. The use of this single pair proved adequate for this geometry and axisymmetric

force (4.1) but led to controllability problems in the long cylinder discussed in the next section.
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The sensors are often more portable (unless piezoceramic patches or other permanently

bonded materials are employed) and a variety of con�gurations were considered. Criteria

which are considered when determining number and placement are hardware limitations (re-

stricted number of input channels for data acquisition), physical constraints (sensors outside

a transformer or submarine are unsuitable), Riccati solution conditioning etc. The hard-

ware constraints limit the available number of sensors while physical constraints often make

it advantageous to limit the types and placement of sensors. The ideal case is to eliminate

the acoustic sensors entirely and use the model with coupling along with structural data to

reconstruct the acoustic state.

For the simulations presented here, three sensor con�gurations were considered as sum-

marized in Table 5. In all cases, the number of sensors measuring the potential was taken to

be N� = 0 in (2.11) when constructing the observation matrix (2.12). This is due to the fact

that the potential is not a readily measured state.

For Compensator I, 5 microphone, 5 velocity, and 5 displacement measurements at the

observation points

!1p = (0; 0; :0334) ; 1w = 1v = (R=3; 0)

!2p = (R; 0; `=2) ; 2w = 2v = (R=3; �)

!3p = (R;�; `=2) ; 3w = 3v = (2R=3; �=2)

!4p = (R;�=2; `) ; 4w = 4v = (2R=3; 7�=6)

!5p = (R; 3�=2; `) ; 5w = 5v = (2R=3; 11�=6)

were used for state reconstruction (see Figure 4). This implies that Np=Nw=Nv=5 in (2.12).

ω1p

ω3p

ω2p

ω4p ω5p

R

=
=

w v
γ
2

=

=

=

w

w

θ = 0

γ γ

γ γ

γ

γ1 γ1

γ γ

3 3

4 v

5w v5

w v

v
2

4

Figure 4. Pressure and plate observation points for the structural acoustic system.

Compensator II di�ers from Compensator I in the manner through which the microphone

observation submatrix Cp is employed. For the calculation of the observer gain through

solution of the observer Riccati equation (2.20), this submatrix was retained so that the full

observation matrix C had dimension (Np + Nw + Nv) � (2N + M). For the calculation

of the state output (2.15) and the state estimate x̂(t) solving (2.19), however, only plate
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measurements were considered so Np = 0 which results in a null submatrix Cp in (2.12). The

acoustic sensors utilized in this manner are referred to as virtual microphones.

This second compensator is motivated by the goal of eliminating the acoustic sensors and

utilizing the coupled model for state reconstruction using solely structural data. This is what

is implemented in the state calculations (2.19). The motivation for including the pressure

submatrix Cp when calculating the observer gain is the maintenance of conditioning for Riccati

solutions, lower spectral radii and closed loop spectrum bounds. As illustrated in [4], solution

of the observer Riccati equation (2.20) with solely structural observation components leads to

unacceptable conditioning and spectral radii when computing observer gains.

Compensator III utilizes both virtual microphones and virtual displacement sensors so

that the only physical data used when estimating the state are velocity measurements. This

is motivated by physical constraints on structural sensors. Displacement measurements us-

ing proximity sensors are typically di�cult to obtain whereas velocity measurements can be

obtained using laser vibrometers or integration of accelerometer data. Nonzero initial condi-

tions for the state estimator were employed in all three compensators. As detailed in [4], this

permitted additional comparison between the performance of the three compensators.

The construction of a controller using virtual sensors provides a great deal of exibility.

In addition to permitting the design of controllers utilizing certain state measurements, it

provides the capability for developing controllers designed for a variety of environments. The

observation gains are computed using the full observation matrix in each case. The observer

submatrices Cp; Cw; Cv can then be incorporated or omitted in the state estimator computa-

tions depending on the available data. This allows for some latitude in sensor location as well

as the disabling (in the data collection process) of damaged or superuous sensors. While

heuristic in nature, the dual incorporation of the observation submatrices to accommodate

virtual sensors proves an e�ective technique for reducing the number of physical sensors while

maintaining the conditioning of the gain and observer matrices.

The �nal control laws considered are the full state H1/MinMax controller (2.17) and the

Kalman �lter which results with  =1. These two laws provide benchmarks against which

to compare the H1/MinMax output feedback controllers.

Sensors Sensor Components Sensor Components

Mics. Disp. Vel. for Riccati Solution for Control Computation

Compensator I 5 5 5 Np = Nw = Nv = 5 Np = Nw = Nv = 5

Compensator II 5 Virtual 5 5 Np = Nw = Nv = 5 Np = 0; Nw = Nv = 5

Compensator III 5 Virtual 5 Virtual 5 Np = Nw = Nv = 5 Np = Nw = 0; Nv = 5

Kalman Filter 5 5 5 Np = Nw = Nv = 5 Np = Nw = Nv = 5

H1 Control Full State

Table 5. Full state and output feedback control laws with sensor numbers.
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Trajectories for the uncontrolled system and system controlled via the �ve control laws

were computed over the time interval [0; :16] with 0%; 5% and 10% relative noise added to the

model and observations. The rms pressure values at the cavity points c1; c2; c3 and the rms

displacement at the plate center p1 = (0; 0) for the 5% noise case are summarized in Table 6.

Time domain plots of the uncontrolled and controlled pressure at c1 = (0; 0; :05) are given

in Figure 5 while the rms sound pressure values along the central axis L1 (see Figure 3) are

plotted in Figure 6.

As expected, the full state H1/MinMax controller provides the best performance since

it utilizes the most information. With 5% noise, it provides a 12.5 dB reduction at c1 with

equally signi�cant reductions throughout the length of the cavity. The Kalman �lter yields

an 8.5 dB reduction at c1 with performance less than the full state MinMax control due to the

limited number of observations and the lack of robustness in the presence of noise. The three

MinMax compensators yield 7-8 dB reductions at c1 with similar performances throughout

the cavity. In comparing the rms values and time plots of the three compensators, it is noted

that the performance of Compensator I with measurements of pressure, displacement and

velocity is only 1-2 dB better than that of Compensators II and III. Recall from Table 5 that

Compensator III employs only 5 velocity sensors for the actual state reconstruction. The pre-

computed gains and coupled model provide the remaining information required for accurate

state estimation and control computation.

The global nature of the noise reduction should also be noted. Both time and rms plots

illustrate that model-based controllers employing the structure-mounted actuator provide sig-

ni�cant attenuation throughout the cavity.

These results demonstrate the possibility of obtaining very e�ective control attenuation

using only structural observations with the coupled model used to estimate the structural and

acoustic states. This is important in many interior �eld applications such as the structural

acoustic system described here and crucial in exterior �eld applications (e.g., transformer or

submarine) where acoustic measurements may be impossible to attain.

Sound pressure level (dB) Displacement (m)

c1 c2 c3 p1

open loop 119:7 113:7 119:7 12:4� 10�5

MinMax full state 107:2 103:2 104:1 8:0� 10�5

Kalman �lter (I) 111:3 105:9 110:9 8:0� 10�5

MinMax compensator (I) 111:3 105:9 110:9 8:0� 10�5

MinMax compensator (II) 112:8 106:9 112:3 8:0� 10�5

MinMax compensator (III) 112:8 106:9 112:3 8:0� 10�5

Table 6. Sound pressure levels and displacements (rms) in the presence of 5% noise.
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Figure 5. Time history of sound pressure level at c1 = (0; 0; 0:05) with 5% noise; (a) Open

loop, (b) Full state MinMax controller, (c) MinMax compensator I, (d) MinMax compen-

sator II, (e) MinMax compensator III, (f) Kalman �lter.
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Figure 6. Sound pressure level along central z-axis L1 over the time interval [0; 0:16]; (a) 0%

noise, (b) 5% noise. Compensators II and III provide graphically identical attenuation.

5 Closed Loop Simulations { Long Cylinder

Two physical mechanisms that contribute signi�cantly to the di�culty in controlling structure-

borne noise are the structural acoustic coupling and the relatively slow wave speed in the

acoustic �eld. The e�ects and utilization of the coupling have been described in previous

sections and will be re-addressed in Section 6. The e�cacy of using the dynamic wave model

to incorporate the wave speed is illustrated here through consideration of a cylinder whose

length is signi�cantly larger than the end-mounted vibrating plate (see Figure 7a). Speci�cally,

the plate has the same dimensions as that in previous sections while the length of the cylinder

is now 3:206m. This yields a cylindrical length to plate diameter ratio of 7 as compared to

2.33 in Section 4. The forcing function in (4.1) was again used to model a uniform periodic

acoustic �eld driving the plate.

For these simulations, three patch con�gurations were considered as depicted in Figure 7b,

c, d. Speci�cally, two pairs were circular (r1 = 0; r2 = R=12 and r1 = 0; r2 = R=4) and

one was ringlike (r1 = R=3; r2 = R=2). The MinMax parameter choice  = 10 provided an

adequate balance between conditioning and stability.

For the full state feedback law (2.17), rms sound pressure levels along the axes

A1: (� = 0, r = 0, 0 � z � `)

A2: (� = 0, r = R=4, 0 � z � `)

A3: (� = 0, r = R=2, 0 � z � `)

A4: (� = 0, r = 3R=4, 0 � z � `)

(see Figure 7a) are plotted in Figure 8. In each case, it is noted that the small circular patch

pair (r1 = 0; r2 = R=12) provides the least attenuation whereas the patch ring provides up to

30 dB attenuation. It is also noted that negligible attenuation is attained along the middle
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(a)

(b) (c) (d)

A4
A3

A1
A2

Figure 7. (a) The acoustic cavity with observation axes 1; � � � ; 4; (b) patch with radius

r = R=12; (c) patch with radius r = R=4; (d) patch ring with r1 = R=4; r2 = R=2.

1=3 of the central axis. This illustrates a controllability issue which arises when utilizing a

single patch pair in a system whose length is signi�cantly longer than the driving plate. Hence

while signi�cant attenuation is achieved throughout most of the cavity, optimization issues

concerning patch number and orientation should be investigated to attain global attenuation.

Similar results obtained with Compensators I and III described in Table 5 are plotted in

Figure 9. The small patch having radius R=12 was employed as an actuator and rms sound

pressure levels along axis 2 are reported in the �gure. For both cases (0% and 5% noise),

10-12 dB reductions were obtained along this axis, even with Compensator III which employs

only 5 velocity observations for state reconstruction. The tendencies along axes 3 and 4 are

similar while the rms pressure along axis 1 still exhibits the central region with negligible

control.

For both the full state feedback controller and the compensator, the information regarding

propagation of the acoustic response is provided by the dynamic wave equation (2.1). Due

to the low wave speed (343m=sec), the time delay between the input of voltage to the patch

and the acoustic response at a sensor is signi�cant. If left unmodeled or uncompensated,

this delay will destabilize a controller. This is one motivation for utilizing wave-based rather

than modal-based controllers in many acoustic applications. As illustrated by the results

in Figures 8 and 9, as well as the previous section, the use of a dynamic wave model very

adequately accounts for the delay thus leading to strong attenuation for this system.
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Figure 8. Root mean square (rms) sound pressure levels for 0% noise with full state feedback;

||{ (Open loop), { { { (Small circular patch), � � � � � � (Large circular patch), - � - � - � (Patch

ring); (a) Axis 1, (b) Axis 2, (c) Axis 3, (d) Axis 4.
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Figure 9. RMS sound pressure levels along axis 2 with small patch as actuator; ||{ (Open

loop), { { { (Full state MinMax control), � � � � � � (MinMax compensator I), - � - � - � (MinMax

compensator III); (a) 0% noise, (b) 5% noise.
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6 Closed Loop Simulations{Plate-based controller

The fact that structure-borne noise is generated by a vibrating structure makes it tempting to

reduce the noise solely by controlling the structure. The example we consider in this section

reinforces the tenet held by many acousticians that this strategy is not e�ective in general

and should be used only for certain exogenous frequencies (see, for example, [13, 20]). It also

illustrates the bene�ts of utilizing a compensator for the coupled system which employs only

structural sensors (see Compensator III of Table 5) rather than a purely structural controller.

For the structural acoustic system in this work, a purely structural controller would be

designed for the discretized plate model

"
KP 0

0 MP

# "
_#(t)
�#(t)

#
=

"
0 KP

�KP �CP

# "
#(t)
_#(t)

#
+

"
0

B̂

#
u(t) +

"
0

ĝ(t)

#
+ D̂�(t)

where again, #(t) contains the generalized Fourier coe�cients for displacement and MP ;KP

and CP are the mass, sti�ness and damping matrices for the plate (see Section 2). The control,

exogenous force and uncertainties are contained in B̂u(t); ĝ(t) and D̂�(t), respectively. The

observation matrix for this case is

y(t) =

"
Cw 0

0 Cv

# "
#(t)
_#(t)

#

with 5 displacement and velocity observations (Nw = Nv = 5).

Control results for the forcing functions f1(t) = sin(130�t) ; f2(t) = sin(330�t) using the

plate-based compensator with Nw = Nv = 5 are reported in Tables 7 and 8. The �rst

frequency couples e�ectively with the 59.5 Hz plate-like mode while f2(t) strongly drives the

163.4 Hz cavity-like mode. For comparison, the attenuation levels obtained with the plate-

based H1/MinMax full state control law are also summarized in the tables.

As noted by the rms sound pressure levels in Table 7, the plate-based compensator is

fairly e�ective in attenuating noise generated primarily by a plate-like mode. The results

in Table 8 illustrate that this strategy is ine�ective (at some points, sound pressure levels

are actually increased) for exogenous frequencies driving cavity-like modes (this reinforces

observations made in [13, 20]). While rms displacement levels are reduced by a factor of nearly

four, sound pressure levels remain high due to the e�ective structural acoustic coupling. To

attain an e�ective compensator for general frequencies, the coupling mechanisms and acoustic

components must be incorporated in the model and control law.

Pressure level (dB) Displacement (m)

c1 c2 c3 p1

open loop 116:4 105:4 112:4 5:254 � 10�4

H1 full state 107:7 101:4 105:2 0:464 � 10�4

H1 compensator 109:5 103:4 109:2 0:950 � 10�4

Table 7. Sound pressure and displacement levels (rms) for the 65 Hz exogenous force f1(t).
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Pressure level (dB) Displacement (m)

c1 c2 c3 p1

open loop 122:5 117:4 122:9 0:413 � 10�4

H1 full state 124:9 119:8 125:3 0:133 � 10�4

H1 compensator 125:5 120:4 125:9 0:342 � 10�4

Table 8. Sound pressure and displacement levels (rms) for the 165 Hz exogenous force f2(t).

7 Conclusion

The utilization of coupling e�ects in control design for structural acoustic systems was consid-

ered in this work. One objective in many such systems is the attenuation of structure-borne

noise through the use of surface-mounted actuators such as piezoceramic patches. Models

for such systems thus have a structural/actuator component, acoustic �eld components and

coupling mechanisms which model the acoustic/structure interactions. It is through these

coupling mechanisms that feedback control of noise through the structural actuators can be

accomplished.

The prototypical experimental setup considered here consisted of a cylindrical acoustic

cavity with a driven circular plate mounted at one end. Piezoceramic patch pairs driven out-

of-phase to produce pure bending moments were used as actuators. A PDE system was used

to model the structural, acoustic and coupling components for this setup. Galerkin approx-

imations were used to obtain an ODE system suitable for simulation, parameter estimation

and control applications.

For this modeled system with full coupling (backpressure and velocity) between the struc-

ture and adjacent acoustic �eld, numerical simulations demonstrated a 1-5 Hz shift in system

frequencies from those observed for the isolated components. The backpressure from the �eld

on the plate produced plate-like system frequencies lower than those of the isolated plate;

hence through the coupling, the �eld acts as added mass to the plate. The coupling of the

plate to the acoustic �eld produces an opposite sti�ening e�ect in that system frequencies of

acoustic-like modes are higher than isolated acoustic frequencies. For the geometry in these

examples, the frequency shifts were fairly small and one might obtain reasonable modal infor-

mation about the system through consideration of the uncoupled structure and acoustic �eld.

In general, however, if coupling mechanisms are not included in the model, the frequency

inaccuracies can nullify and possibly destabilize the controller.

The utilization of the coupling mechanisms can, on the other hand, lead to very e�ective

controllers. To illustrate this, two sets of H1/MinMax control laws were considered. Full

state information was assumed for the �rst while the states were estimated from sensor mea-

surements and then employed in an output feedback law in the second. In the latter (the

MinMax compensator), a variety of sensor arrangements were compared to determine the

extent to which the coupling could be utilized.

For various exogenous inputs, numerical simulations demonstrated high attenuation with

both the full state feedback law and the output feedback law with states reconstructed us-

ing pressure, velocity and displacement measurements. More importantly, the results demon-
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strated only a 1-2 dB loss of control when state measurements used for feedback were obtained

only from structural velocity sensors. This latter case is important since it demonstrates that

through the coupled structural acoustic model, accurate acoustic state information can be ob-

tained solely from velocity measurements. This has important rami�cations in a large number

of structural acoustic systems since it demonstrates the possibility of eliminating pressure sen-

sors (microphones) in the �eld (microphones in a fuselage can be unwieldy while microphones

outside a submarine are unreasonable).

Finally, numerical results demonstrating the necessity of retaining the coupling and acous-

tic components when designing a general control law for noise attenuation were presented.

These results demonstrate that while a control law based solely on the structural component

can be e�ective for exogenous frequencies near plate-like frequencies, it is totally ine�ective

for applications in which cavity-like modes are excited. This reinforces the necessity of careful

modeling of the structural, acoustic and coupling components and the design of a compensator

which utilizes all three components.
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